
Copyright ã1994 Christopher J. Kane.    Version 1.1.

Notes on the MiscTBMK String Searching Routines

Tips on Using these Routines

You've got to search a 10MB memory stream for 30 character literal strings?
No problem! You need to search a 256 character string for an occurrence of the
word and? Well... Here are a few hints on how and when to use these routines.
1. The larger, the better.    The algorithm exhibits two interesting properties
that result in the same thing: the larger the text to search, the faster the

apparent search rate; the larger the pattern for which to search, the faster the
real search rate.    Both of these (counter-intuitive?) properties are a product of
the fast skip loop [see discussion below].    What this means in quantitative
terms is that the algorithm is best- suited to searching for patterns of length
>= 5 (or so), and searching texts greater than 5 kilobytes (very roughly).   
Patterns and texts shorter than that do not take as great an advantage of the
skip loop, and the overhead of the pre-processing ("compiling") on the pattern
string begins to be noticeable and, as pattern and text size shrinks, this
algorithm will be slower than the simple brute-force string searching easily
imagined.    I have no canonical data though; there are many variables and the
best suggestion is to experiment.
2. Regular expressions.    These routines will only search for an array of literal
characters.    There is no regular expression support.    Note that the search is
for a fixed-length block of characters, not just strings.    There may be nul
characters imbedded in the pattern, if desired.

3. Reading and seeking for searching.    Clearly, only streams that are readable
can be searched.    Unfortunately, the Boyer-Moore algorithm also requires
buffering of the text.    Thus, only streams that are seekable can be searched
with the stream-searching routine (at present).    Mach port streams and
streams on pipes/sockets and FIFOs are not seekable.    This applies particularly
to the C library standard I/O descriptor stdin, which may be reading from a file,
a terminal, a pipe, etc.    So sometimes you may be able to search stdin with
these routines, others not.    See the UNIX manual page for lseek(2) for more
information.
4. Big contiguous blocks of memory.    The memory searching routine is about
six times faster than the stream searching routine.    A lot of work goes into
maintaining the stream header (structure).    Use the memory searching routine
whenever you can.    The practical suggestions that arise from this:

´ For a memory stream, use NXGetMemoryBuffer() to get the stream's

memory buffer, and pass this buffer to Misc_TBMKsearch_memory().   
NXOpenMemory() and NXMapFile() create memory streams.

´ If you want to search a file on disk, use NXMapFile() to get a stream on
the file, rather than opening the file and using NXOpenFile() on the
descriptor.    NXMapFile() will (for most cases) call map_fd() to have the file
mapped into memory on demand.    If you don't need a stream, use open()
and map_fd() (or mmap() on non-NeXTs if available) yourself.    Use
Misc_TBMKsearch_memory() on the block of data that results.

´ The stream returned by the Text class's -stream instance method is *not*
a memory stream, nor would be a seekable stream opened on stdin.   
Misc_TBMKsearch_stream() must be used for these.    Alternatively, it may
be faster to read the material into another (memory) stream, and then get
the memory buffer and search in it.

5. More is better.    Finally, don't recompile a pattern if you don't have to.    If
the user is doing a search, they may want to do a "find next"-type search for

their next search.    You may not want to throw that compiled pattern structure
away after a search operation.    Remember, though, that the case sensitivity
and direction of a search can only be specified when a pattern is compiled.   
You may find that the extra overhead of caching a few compiled patterns
outweighs any efficiency advantage.

Notes on the Implementation

The string searching algorithm implemented here has its foundations in the
work of Boyer and Moore published over 15 years ago.    A few enhancements
to their algorithm have been made in that time, but it remains fundamentally
the same.    There are several fast string-searching algorithms, but many rely
on knowledge of the structure text to be searched (for instance, character
frequency).    This algorithm was chosen as the basis for this implementation

because it is fast, relatively simple, and general.    It began with the fast
version of the Boyer-Moore algorithm, presented by Hume and Sunday
[Hum91] which they called the Tuned Boyer-Moore algorithm.    I have taken
this algorithm, then the fastest known general version of Boyer ands Moore's,
generalized it to both forward and backward text searching and optional case
insensitivity, and coded a version in C.
The result was quite fast, considering all the "extra" functionality loaded into
the code (as compared with the algorithms that are designed and tested in the
literature).    Version 1.1 is even faster than
the original version, as more decisions have been pushed into the pre-
processing step and the skip loop has been unrolled a bit.

It's in the skip loop that the code takes typically 70-90% of its time.    The skip
loop uses the skip table calculated during pattern "compilation".    The skip
table contains the shift that should be applied to the current text pointer to

align to the next possible match, one value for each character; the shift is the
distance from the last occurance of a particular character in the pattern to the
end of the pattern.    The comparison of the pattern against the text proceeds
from right to left (the innovation of Boyer and Moore).    Now for an example
(forward search):

pattern: nation
skip['n']=0, skip['o']=1, skip['i']=2, etc.; patlen=6; jump=5

text: Hath yoked a nation strong, trained up in arms.²
1 *****^ skip['y']=6
2 *****^ skip['a']=4
3 *****^ skip['t']=3
4 *****^ skip['n']=0
5 *****^ skip['n']=0; jump=5
6 *****^ skip['r']=6
7 *****^ skip[' ']=6
8 *****^ skip[' ']=6

9 *****^ out of bounds, quit
text: Hath yoked a nation strong, trained up in arms.

The carat marks the "current pointer" in the text being searched, and the
asterisks represent the other characters of the pattern for convenience.    At
line 1, we are about to begin the skip loop.    The skip value for 'y' is consulted,
and found to be 6; the skip is the length of the pattern for characters not in the
pattern.    The current pointer is moved 6 forward; since 'y' is not in the pattern,
moving the pointer to anywhere where the 'y' would have continued to line up
with a character of the pattern is pointless.

Now, we look up the skip (shift) of 'a', four, and shift the pointer that much.   
This illustrates the "align to the next possible match" I spoke of earlier--by
shifting the current pointer by four, the 'a' in the text and the (rightmost) 'a' in
the pattern have been aligned, which is required if there is to be any hope of a
match at all.    Now back to skip table lookup, this time with an 't'.    The pattern

is shifted right three.

Now (line #4), the pointer is pointing to an 'n', which has skip value of zero.   
The value of zero is special, because in this right-to-left comparison thing we
are doing, an 'n' indicates a possible pattern match.    The algorithm falls out of
the skip loop at this point and performs a character-by-character comparison of
the pattern and the text.    Sharp-eyed readers of the code will notice that the
this comparison is left-to-right.    Some research (and a little thought) indicates
that there are often relationships between adjacent characters in patterns
(consider the many common word suffixes like ed, tion, es, or any word with
'q': qu, or common pairs of letters like ck and th) and that the "least
relationship" is between the first and last character.    So, since the character
on the right has already matched, we look at the character on the other end of
the pattern.    Some experimentation I have done showed that typically 75-90%
of the possible matches (where the algorithm has fallen out of the skip loop)

mismatch on the first character test.    To continue with the example, this is a
match, which the algorithm finds, and then skips the length of the pattern
forward (since the algorithm searches for non-overlapping matches).

Hmmm, another 'n'.    The skip loop isn't getting much time in.    We fall out of
the skip loop again, but this time, we mismatch on the first comparison (with
the space).    At this point we know we matched with the rightmost character,
so we shift the pointer so that the second-to-the-rightmost occurrence of the
last character in the pattern is align with the character matched in the text.   
This is the same thing we did for the 'a' and 't' above (lines 2,3) (shift to next
possible match) but with the second-to-the-rightmost occurrence, since the
rightmost occurrence has had its chance, and failed.    The value of jump has
been pre-computed in the pre-processing of the pattern.

The current pointer is now pointing to an 'r' in the text.    Here we see why the

skip loop is so wonderful.    'r' in the pattern?    No, shift 6.    ' ' in the pattern?   
No, shift 6.    ' ' in the pattern?    No, shift 6.    Its like a pebble skipping across a
lake; the algorithm only briefly "touches down on" the text before moving on.   
Once the pointer points beyond the end of the text, there aren't enough
characters left to possibly match, so the algorithm quits.

If a reverse search is desired, the current pointer moves left, skipping looks at
the leftmost character, and text-pattern comparison is from right-to-left; the
mirror image of searching forward (which is the intuitive result, but requires
some thinking to actually prove to onesefl that it can work).    I've not said
anything about case sensitive comparison in the algorithm, you may have
noticed.    The code seems to be comparing the skip values of the characters
rather than the characters themselves.    The reasoning behind this is left as an
exercise to the reader.    (Hint: write the code for the obvious comparison loop,
handling both search possibilities (case sensitive and case insensitive

comparisons), pretending the value of nocases has been saved in the pattern
structure by the pre-processing routine, then optimize.    See near the end of
this document for some discussion on this.)

While reading this example, you've probably thought once or twice, What if...?
or How about...? or Why not...?    Well, I invite you to experiment.    If you come
up with something interesting, please let me know.    I've done quite a bit of it
myself, and have decided that this particular coding of the algorithm is better
or faster than other things I've tried.    Here are two possible optimizations that
are not-so-obvious that I haven't implemented; the reasons for that are the
problems-at-the-end-of-the-chapter.

1. Ignore for a moment the first if statement in the skip loop and all those
+= assignments (the loop has been unrolled to reduce the overhead of the
loop control; the overall speedup is 15-20% with this unrolling).    The basic

loop skips, then checks for out-of-bounds and exists if so.    If the text being
searched is large, that bounds check is done an awful lot of times when
there is no possibility of it being true (and in any case, of course, it is only
true once).    Can you think of a way to eliminate that if statement?    There
is a way: with sentinels.    Suppose that the patlen characters after the end
of the text were filled with the rightmost character of the pattern (which,
recall, has a skip value of zero).    When the skip loop runs off the end of the
text-to-be-searched, it will run into this area of zero skips and fall out of the
skip loop, where we can then put the bounds check.    Since the skip loop
iterates on average two to three times before exiting, and we've eliminated
two comparisons per iteration, we can expect this to be a big win (another
15% ± 5% overall it turns out, with the loop unrolling that is also there).   
This is actually part of the algorithm presented in [Hum91]--sentinels are
written after the end of the text before searching begins.    Give at least two
reasons why this is not a good idea.    Are there ways of circumventing

these problems?

2. The value of jump, the shift to move the pattern to the next alignment of
the rightmost (in forward searching) pattern character is at least 1 and at
most the length of the pattern.    Another move-to-next-potential-match
heuristic the algorithm could use after the text-pattern comparison has
failed is to jump based on the skip value of the character after the current
pointer--the character after the matched rightmost character (text[cp+1], if
we pretend cp is an integer index into text).    Rather than

cp += pattern->jump;
the statement could be

cp += pattern->skip[*(cp+1)]+1;
The values in the skip table are between 0 and the length of the pattern,
inclusive, so this jump is also always at least 1 but may be 1 greater than
the pattern length; potentially bigger jumps than the current jump

heuristic.    Try implementing this, and testing whether the algorithm is then
faster or slower than the current one (you may wish to use pattern-
>skip[*++cp]; on the righthand side of the assignment).    If it is faster,
why do you suppose that it wasn't used?    If it is slower, why is it slower?   
Would it be better to "get the best of both worlds" by using the maximum
of the two values?

Discussion on case sensitivity in the text-pattern comparison loop:     Did you
split the loop into two loops, choosing one based on if (pattern->nocases)...?   
Note that this makes the same decision over and over again, a decision that is
fixed for the duration of the algorithm.    The "obvious" comparison loop can be
coded as one loop, but the loop test involves then possibly two comparisons,
two boolean operations, and a boolean variable (pattern->nocases).    And
again, there is a decision being made again and again that is constant for the

entire algorithm.    In a case insensitive search, the skip value for an uppercase
letter is the same as its lower case equivalent.    The code that being used uses
the skip table as a lookup table much the same way that the isupper() and
related macros use one, mapping characters into classes.

Discussion on skip loop sentinel optimization:    Two possible reasons are that
addresses "beyond" either end of the text may not be in the virtual memory
space of the process, or that the memory may be read-only.    There aren't any
good ways around these problems; copying the text to other memory is just
not practical unless the text length is quite small, and in this case the pattern
pre-processing probably dominates the search time!    In the theoretical
literature, practical problems like this are often ignored, so Hume and Sunday
can get away with this optimization.

Discussion on alternate jump heuristics:    Actually, it is roughly a wash; neither

heuristic is faster.    The potentially greater jump of the proposed heuristic is
negated by the extra memory    access required.    Taking the maximum of the
two heuristics is definately worse: not only would both values have to be
computed, but they then need to be compared to decide which is larger; a
potentially greater jump of 1 cannot offset this.    This is why the maximum of
the two delta values of the original Boyer-Moore algorithm (for those of you
familiar with it) is not used, nor is the second delta function; no speed
advantage.

[Hum91]    Hume, A., D.M. Sunday.    Fast String Searching.    Software--Practice
and Experience. Vol. 21.    No. 11.    p. 1221-48.    November 1991.

² Wm. Shakespeare.    Titus Andronicus. 1.1.

